EPOS GNSS - Description of the Products

1 Details of processing options for time series solutions

1.a GAMIT solution at UGA-CNRS-ISTerre

EUROPEAN PLATE OBSERVING SYSTEM – GNSS products		
UGA-CNRS-ISTerre Double Difference Analysis Center Strategy Summary		
Analysis center	CNRS	
	Observatoire des Sciences de l'Univers de Grenoble	
	ISTerre	
	Université Grenoble Alpes	
	BP 53	
	38041 Grenoble CEDEX 9	
	FRANCE	
	Fax: +33 (0)4 76 63 52 52	
Contact	e-mail: isterre-epos-gnss(at)univ-grenoble-alpes.fr	
	Phone: +33 (0)4 76 63 52 08	
Software used	GAMIT v. 10.71, GLOBK v. 10.71, developed at MIT/SIO	
Preparation date	January 29, 2016	
DOI	10.17178/GNSS.products.EPOS.2019	
Modification dates	January 29, 2016 Creation	
	November 26, 2020 Modification	
	September 5, 2023 Modification	
Date last complete data		
analysis		
Automatic updates of	Automatic update at D-2 and D-25	
the time series		
MEASUREMENT MODELS		
Observable	Doubly differenced, ionosphere-free combination of L1 and L2 carrier	
	phases. Pseudoranges are used only to obtain receiver clock offsets and in	
	ambiguity resolution.	
Data weighting	Sigma on doubly differenced LC phase: Site- and elevation-dependent based	
	on iterated	
	Cleaning at 30-second rate.	
	Sampling rate: 2 minutes	
	Elevation angle cutoff : 10	
Data Editing	Cycles slips detected and fixed.	
_	Unresolved cycle slips estimated in solution.	
	Postfit editing using 4 times RMS deletion.	
RHC phase rotation	Phase polarization effects applied (Wu et al, 1993)	
corr.		
Ground antenna phase	Elevation- and azimuth-dependent phase center corrections are applied	
center cal.	according to the model IG\$14.	

Tropogrham	Atmospheric mapping functions and hydrostatic zonith delays from VME1
Toposphere	numerical model (Boehm et al., 2006b)
	2-hour piecewise linear function estimated, 1 NS and EW gradient per day.
	Met data input: VMF1 global numerical model (Boehm et al, 2006)
	Mapping Function: VMF1 grid
	Estimation: Zenith delay and horizontal gradients
Ionosphere	For daily D-2 and D-25 automatic processing: Not modeled (1 st order term
F	eliminated by forming the ionosphere-free linear combination of L1 and L2).
	For annual reprocessing : Use of the total electron content (TEC) model from
	the ionex file $(2^{nd} \text{ and } 3^{rd} \text{ order terms})$.
Plate motions	ITRF2014 velocities
Tidal	Solid earth and tidal displacement:
	constant Love number tides frequency dependent radial tide (K1)
	Pole tide: Applied to Mean IERS pole position
	Ocean loading: FES2004 (Lyard et al. 2006)
Non-tidal loading	Atmospheric Pressure: Applied for annual reprocessing not applied for
i ton-tidai ioadilig	automatic D-25 and D-2 processing
	Ocean Bottom Pressure: Not applied
	Surface Hydrology: Not applied
	Other Effects: None applied
Farth Orientation	IERS Bulletin B plus diurnal and semidiurnal variations in x y and UT1
Parameter (EOP)	models (EOP) P. Pay [1005] IEPS Tech Note 21 [1006]
Model	110dels (EOI) K. Kay [1995], 1EKS Teell. Note 21 [1990]
Satellite phase center	Phase centers offsets from ngs14, 2101 aty applied
calibration	Thase centers offsets from hgs14_2101.atx applied
Relativity corrections	Relativistic corrections applied
GPS attitude model	Yaw computed using model of Bar-Sever (1996), using nominal rates or
	estimates supplied by JPL
ORBIT MODELS	
Geopotential	EGM2008 12x12 and order 9 (Pavlis et al., 2012)
L	GM = 398600.4415 km**3/sec**2
	AE = 6378.1363 km
Third-body	Sun and Moon as point masses
5	Ephemeris: CfA PEP NBODY 740
	$GMsun = 132712440000 \text{ km}^{*3/sec}^{*2}$
	$GMmoon = 4902.7989 \text{ km}^{**3/sec}^{**2}$
Solar radiation pressure	Block II/IIA/IIR: JPL empirical SRP model, GSPM-13: Bar-Sever and
F	Kuang, (2004): Sibois et al. 2014
	Estimate GPS "Y-Bias" and solar radiation pressure(SRP) coefficient as
	constant with no a-priori constraint. Make small time-varying (stochastic)
	adjustments to SRP coefficients in spacecraft body-fixed X and Z directions
	(1% process noise sigma with 1 hr 11 sec updates and 4-hour correlation
	time.) Estimate tightly constrained time-varying empirical acceleration in
	spacecraft Y direction (0.01 nm/s ² process noise sigma with 1 hr 11 sec
	updates and 4-hour correlation time.)
	Earth shadow model: umbra and penumbra
	Earth albedo: not applied
	Satellite attitude model not applied
Tidal forces	Solid earth tides: frequency independent Love number $K2=0.300$
	Ocean tides: None

Relativity	applied (IERS 1996, Chapter 11, Eqn.1)	
Numerical Integration	Adams-Moulton fixed-step, 11-pt predictor-corrector with Nordsieck	
6	variable-step starting procedure (see Ash. 1972 and references therein)	
	Integration step-size: 75 s; tabular interval: 900 s	
	Arc length: 24 hours	
ESTIMATED PARAMETERS (APRIORI VALUES & SIGMAS)		
Adjustment	Weighted least squares plus Kalman filter	
Stations coordinates	As of 2020, up to 17 networks (40 stations per network)	
	2 common sites between networks	
	Weak constraints applied to site coordinates	
Satellite clocks bias	Initial values from linear fit to Broadcast ephemeris.	
	Values estimated during data cleaning.	
Receiver clock bias	Time estimated from pseudoranges.	
Orbital parameters	Initial Position and Velocity (IC) plus 9 radiation pressure terms: constant	
-	and sin/cos once-per-rev terms for a direct, y-axis, and b-axis acceleration.	
	ICs estimated each day. Radiation parameters treated as random walk with	
	process noise based on independent daily estimates. ICs fixed to IGS Final	
	orbit values.	
Troposphere	Piece-wise linear function in zenith delay estimated once per 2-hr for each	
	station constrained by a random-walk process to 20mm/sqrt(hr);	
	1 N-S & 1 E-W gradient parameter per day per station, constrained to 30 mm	
	at 10 deg elevation angle	
	Mapping function: VMF1	
Ionosphere	1st order effect estimated by linear combination of L1 and L2 phase.	
Ambiguity	Resolution attempted for all baselines but resolving Melbourne-Webena	
	Widelines for L2-L1 using pseudo-ranges with differential code biases	
	applied, and then L1 from geodetic solution using ionospheric free	
	observable.	
Earth Orientation	Pole X/Y and their rates, and UT1 rate estimated once per day.	
Parameters (EOP)		
GPS attitude model	Not estimated	
REFERENCE FRAMES		
Inertial	J2000 Geocentric	
Terrestrial	IGS14 station No constrained coordinates and velocities	
Interconnection	Precession: IAU 1976 Precession Theory	
	Nutation: IAU 2000 Nutation Theory	

REFERENCES

Ash, M. E., Determination of Earth satellite orbits, Tech. Note 1972-5, Lincoln Laboratory, MIT, 19 April 1972.

Bar-Sever, Y. E., A new module for GPS yaw attitude, in Proc. IGS Workshop: Special Topics and New Directions, edit. G. Gendt and G. Dick, pp. 128-140, GeoForschungsZentrum, Potsdam, 1996.
Beutler, G., E. Brockmann, W. Gurtner, U. Hugentobler, L. Mervart, and M. Rothacher, Extended Orbit Modeling Techniques at the CODE Processing Center of the International GPS Service for Geodynamics (IGS): Theory and Initial Results, Manuscripta Geodaetica, 19, 367-386, 1994.
Boehm, J., and H. Schuh, Global Pressure and Temperature (GPT): A spherical harmonic expansion of annual pressure and temperature variations for geodetic applications, J. Geod., 2006
Boehm, J., A. Niell, P. Tregoning, and H. Schuh, Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data, Geophys. Res. Lett., 33, L07304, doi:10.1029/2005/GL025546, 2006a. Boehm J, Werl B, Schuh H, Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data, J Geophys Res 111:B02406. doi:10.1029/2005JB003629, 2006b.

Dong, D., and Y. Bock, Global Positioning System network analysis with phase ambiguity resolution applied to crustal deformation studies in California, Journal of Geophysical Research, 94, 3949-3966, 1989.

Dong, D., T. A. Herring, and R. W. King, Estimating Regional Deformation from a Combination of Space and Terrestrial Geodetic Data, J. Geodesy, 72, 200-214, 1998.

Lyard, F., F. Lefevre, T. Letellier and O. Francis. Modelling the global ocean tides: a modern insight from FES2004, Ocean Dynamics, 56, 394-415, 2006.

Niell, A. E., Global mapping functions for the atmospheric delay, J. Geophys. Res., 101, 3227-3246, 1996.

Pavlis, N.K., S.A. Holmes, S.C. Kenyon, J.K. Factor, The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. Geop. Res., 117(B4), 2012.

Ray, R.D., ftp://maia.usno.navy.mil/conventions/chapter8/ray.f (IERS Standards), 1995

Schaffrin, B., and Y. Bock, A unified scheme for processing GPS phase observations, Bulletin Geodesique, 62, 142-160, 1988.

Springer, T. A., G. Beutler, and M. Rothacher, A new solar radiation pressure model for the GPS satellites, IGS Analysis Center Workshop, Darmstadt, 9-11 February 1998.

Wu, J. T., S. C. Wu, G. A. Hajj, W. I. Bertiger, S. M. Lichten, Effects of antenna orientation on GPS carrier phase. Manuscripta Geodaetica 18, 1993, 91-98, 1993.

2 Details of processing options for velocity solutions

2.a MIDAS velocity generation from GAMIT solution at UGA-CNRS-ISTerre

To estimate rates of motion for each station and associated uncertainties from the daily time series we applied the robust MIDAS trend estimator (Blewitt et al., 2016). The MIDAS-estimated velocity is essentially the median of the distribution of values calculated using pairs of data in the time series separated by approximately 1 year, making it insensitive to seasonal variation and time series outliers. MIDAS provides uncertainties based on the scaled median of absolute deviations of the residual dispersion.