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Associated products 

WP10-DDSS-014 Products.EPOS.Combined.Velocity 

 

Introduction 

This document describes the quality checks and validation procedures performed at the EPOS 

WP10 INGV analysis centre on the combination of the two EPOS velocity fields. The strategy for 

the combination at velocity level is briefly described for the understanding of the quality check 

and validation procedures. 

 

Input files 

WP10-DDSS-012 Products.EPOS.DDsolution.Velocity  

WP10-DDSS-013 Products.EPOS.PPPsolution.Velocity  

 

Quality checks of the input velocity fields 

We firstly evaluated the quality of the input velocity fields. The DD and PPP solutions provided a 

similar number of velocities (572 for the DD solution and 537 for the PPP one) in the ITRF2008 

reference frame. The mean horizontal and vertical uncertainties correspond to 0.31 and 0.66 

mm/yr for the DD solution and to 0.32 and 0.69 mm/yr for the PPP solution (Figure 1-left and 

Figure 1-centre). Both the velocity solutions were computed using MIDAS software (Blewitt et al., 

2016). The dispersion of the velocity differences reveals no detectable systematics and residuals 

lower than their mean uncertainties (Figure 1-right).  



  

Figure 1: Distributions of horizontal and vertical uncertainties for both the DD and PPP velocity 

solutions (left and centre) and statistics on their differences  

 

Analysis Strategy 

The strategy foresees the combination of different velocity fields (no precise positions required) 

with a minimum of common fiducial stations (EUREF) that will define the reference system. Each 

input velocity field is considered as a stochastic sample of the true velocity field and the output 

combined velocity, as the best estimate of the true velocity field. In a small region approximation 

the input velocity fields can also be expressed into different reference frames (ITRF) because rigid 

rotations, translations and scale factor can be treated stochastically through a loosening 

transformation. The estimation problem is solved in a least squares scheme in which each velocity 

contributes to the estimation of a unique station velocity together with the loosened variance-

covariance matrix. The final reference system can be established in the combination process by 

including the chosen ITRF velocities with their variance-covariance matrix that imposes the ITRF 

constraints to the combined solution.  

The combination process consists of two main steps (Figure 2): the stochastic model 

augmentation, in which rotations and scale uncertainties are increased, i.e. covariance loosening. 

The loosening constraints are in principle arbitrary and should be on the order of the expected 

systematic differences in order to allow the solutions to rotate and scale by the required amount. 

The resulting covariance matrix is termed as loosened covariance (Blewitt, 1998) and is associated 

to the corresponding (unchanged) velocity solution. The second step consists in the least squares 

estimation of the combined velocity field, where the observations are the velocity solutions with 

the associated loosened covariances together with an additional IGS velocity solution, used to 

establish the ITRF frame. The combination is iterated twice in order to estimate the corresponding 

solution weighting factors, balancing mutual weights according to each solution chi-squared (𝜒2) 



(Devoti et al., 2010). Finally, there is the possibility of forcing two or more velocities to be 

estimated together (velocities ties). This is achieved using the classical method of Lagrange 

multipliers (e.g. Arfken et al., 2013), where the least square problem is solved with the equality 

constraints. 

 

Figure 2: Flow-chart of the combination method 

 

To recognize the station identity, we decide to adopt an a-posteriori approach based on the 

assignment of a unique label based on the station positions (i.e. geo-coding). In particular, we 

choose the GHAM code proposed by Agnew (2005) (Figure 3), to label each GPS station 

unambiguously. The GHAM code is composed of alternating letters and numbers, providing tags to 

geographic locations and defining addresses of equal-area cells with arbitrary precision. We 

choose a 12-character code that corresponds to a cell size of 1.9 m (square root of area), which is 

sufficiently small to identify a single GNSS antenna installation. This site recognition can be 

automated and alphabetically sorted codes group stations that would be nearby in space. 

 

Figure 3: Cell-size distribution from an example of 2-char code 

 

Quality check and Validation of the Combination at the velocity level 

To estimate the quality of the combination of the velocity fields, we calculated the dispersion of 

the residuals between each velocity solution and the Combined (COMBI) velocity solution. The 

mean values of the residuals in both cases (Figure 4-left and Figure 4-right) are very close to zero 



and their standard deviations are comparable to the uncertainties of each single solution. The 

percentage of outliers is also low (< 0.8%), thus suggesting the absence of significant discrepancies 

between the two solutions. At the IGb08 stations velocities, a comparison was also performed 

between the COMBI velocity solution and IGb08 one. In this last case, the mean values correspond 

to 0.03, -0.02 and 0.10 mm/yr for the North, East and Vertical components, respectively, whereas 

the standard deviation amount up to 0.31, 0.30 and 0.32 mm/yr for the North, East and Vertical 

components, respectively. In Figure 5, a spatial comparison between the COMBI, DD and PPP 

solutions are also shown for regions characterized by different tectonic regimes.   

 

Figure 4: Residuals between COMBI and each single velocity solution 

 

 

Figure 5: Spatial comparisons between COMBI (red vectors), DD (green vectors) and PPP (blue 

vectors) velocity solutions in both slowly and quickly deforming regions 
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