EPOS GNSS - Description of the Products

1 Details of processing options for time series solutions

1.a EUREF solution

EUROPEAN PLATE OBSERVING SYSTEM – GNSS products		
WUT-EUREF Analysis Center Strategy Summary (combined product based on EPN AC solutions)		
Analysis center	WUT-EUREF	
7 mary 513 center	Warsaw University of Technology	
	Pl. Politechniki 1, 00-661 Warsaw, Poland	
Contact person(s)	Tomasz Liwosz	
Contact person(s)	e-mail: epnacc@pw.edu.pl	
Software used	Bernese GNSS Software 5.4 – 15 EPN ACs, GAMIT/GLOBK 10.71 – 1 EPN AC,	
Software used	GipsyX – 1 EPN AC, EPOS.P8 – 1 AC. The details of the processing strategy	
	correspond to options and models used in Bernese GNSS Software 5.4. The	
	processing strategy is also consistent with the Guidelines for EPN Analysis Centers	
Duanantian data	(http://www.epncb.eu/_documentation/guidelines/guidelines_analysis_centres.pdf).	
Preparation date Version number	30-01-2023	
	10 17200 WHITE ELIDEE CAMPAGE	
DOI	10.17388/WUT-EUREF-CMBPOS	
Modification dates		
Date last complete		
data analysis		
Automatic updates of		
the time series		
MEASUREMENT MO		
Observable	Double differences, ionosphere free linear combination of L1 and L2 phase	
	pseudoranges. Code observations used for receiver clock synchronization and for	
	ambiguity resolution using Melbourne-Wubbena linear combination. The data	
	sampling rate is 30 seconds for preprocessing and 180 seconds for final solution.	
Data weighting	Elevation weighting	
Data Editing	Phase preprocessing using triple differences. Cycle slips are detected and fixed.	
RHC phase rotation	Phase polarization effects applied	
corr.		
Ground antenna phase	Elevation- and azimuth-dependent phase center corrections are applied according	
center cal.	to the IGS model (igs20.atx). In addition individual calibrations are used for some	
	EPN stations according to EUREF model (epnc_20.atx).	
Troposphere	Atmospheric mapping functions and hydrostatic zenith delays from	
	VMF1/VMF3 numerical model (Boehm et al., 2006; Landskron and Böhm	
	2018).	
Ionosphere	First order term is eliminated using ionosphere-free linear combination of L1 and	
	L2. Higher order corrections (second, third and bending effect) are modeled (using	
	CODE ionosphere global model and International Geomagnetic Reference Field	

	model) CODE clobal model is also used to immuous ambiguity massivity
	model). CODE global model is also used to improve ambiguity resolution
Plate motions	strategies. IGS20 velocities
Tidal Non-tidal loading	Solid earth tidal displacement: IERS2010 (Petit and Luzum, 2010)
	Earth pole tide and ocean pole tide: IERS2010 (Petit and Luzum, 2010)
	Ocean loading: FES2014b (Lyard et al., 2021)
	Atmospheric Pressure: Not applied
	Ocean Bottom Pressure: Not applied
	Surface Hydrology: Not applied
	Other Effects: None applied
Earth Orientation	IGS products
Parameter (EOP)	
Model	<u> </u>
Satellite phase center	IGS antenna model (igs20.atx)
calibration	
Relativity corrections	Shapiro effect
GPS attitude model	Nominal attitude
ORBIT MODELS	
Geopotential	EGM2008 (up to degree 12)
Third-body	Positions of Moon, Sun, and planets according to DE421 JPL model.
Solar radiation	Parameters of the new Empirical CODE model estimated (Arnold, 2015).
pressure	
Tidal forces	Solid Earth: IERS2000, Ocean tides: FES2014b (up to degree 8)
Relativity	Schwarzschild effect
Numerical Integration	Collocation method of 10 th order.
	ETERS (APRIORI VALUES & SIGMAS)
Adjustment	Weighted least squares
Stations coordinates	Minimum constraints (no net translation) applied on usable IGS20 reference
	stations.
Satellite clocks bias	Not estimated
Receiver clock bias	Estimated using code pseudo-ranges
Orbital parameters	Not estimated
Troposphere	Troposphere zenith delays estimated as piece-wise linear functions in 1-hour
	intervals. Tropospheric horizontal gradients in north and east directions estimated
	in 24-hour intervals as piece wise linear function.
Ionosphere	Not estimated
Ambiguity	Ambiguities resolved in a baseline by baseline mode using different strategies
	according to baseline length (Dach et al., 2015)
Earth Orientation	Not estimated
Parameters (EOP)	
GPS attitude model	Not estimated
REFERENCE FRAME	
Inertial	J2000 geocentric
Terrestrial	IGS20
Interconnection	Transformation between celestial and terrestrial systems according to IERS2010
DECEDENCES	convention (Petit and Luzum, 2010)
REFERENCES	
Arnold, D., M. Meindl,	G. Beutler, R. Dach, S. Schaer, S. Lutz, L. Prange, K. Sośnica, L. Mervart, and A.

Arnold, D., M. Meindl, G. Beutler, R. Dach, S. Schaer, S. Lutz, L. Prange, K. Sośnica, L. Mervart, and A. Jäggi. CODE's new solar radiation pressure model for GNSS orbit determination. Journal of Geodesy, 89(8):775–791, Aug. 2015. doi: 10.1007/s00190-015-0814-4.

Boehm J, Werl B, Schuh H, Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data, J Geophys Res 111:B02406. doi:10.1029/2005JB003629, 2006.

Dach, R., S. Lutz, P. Fridez, P. Walser (2015), Bernese GNSS Software, Version 5.2, Astronomical Institute, University of Bern.

Landskron and Böhm (2018) VMF3/GPT3: refined discrete and empirical troposphere mapping functions.DOI:10.1007/s00190-017-1066-2

Lyard, F.H., D.J. Allain, M. Cancet, L. Carrère, and N. Picot. FES2014 global ocean tide atlas: design and performance. Ocean Science, 17(3), pp.615-649, 2021.

Petit, G., B. Luzum (Red.) (2010), IERS Conventions (2010), IERS Technical Note 36, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany.

2 Details of processing options for velocity solutions

2.a CATREF velocity generation from EUREF solution at ROB

Multi-year combination using CATREF Input: Daily SINEXs from WUT-EUREF

Estimated parameters: Positions, Velocities, Transformation parameters between each individual solution

and the combined solution

Reference Frame: Position and Velocity solution aligned to IGb14 with minimal constraints on 14

parameters

Outliers removed

Position and Velocity changes accounted for

Constraints: Velocities of collocated sites are constrained except in case of disagreement

Piece-wise velocities constrained except in case of disagreement